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Abstract: During the last decade the technological advances in drug discovery changed the absorption, distribution, 
metabolism, excretion and toxicity (ADMET) profiles of New Chemical Entities (NCEs). Among ADMET processes, 
absorption plays an important role in the research and development of more effective orally administered drugs. Although 
significant progress has been made in in vitro, in situ and in vivo experimental determinations of absorption, the 
development of in silico methodologies has emerged as a cheaper and fast alternative to predict them. Even though several 
in silico models have been described in the literature to predict oral bioavailability and related properties, the prediction 
accuracy and their potential use is still limited. The low precision and high variability of data, the lack of a complete 
experimental and theoretical validation of in silico approach, and above all, the multi-factorial nature of the oral 
absorption term, make the development of predictive in silico models a thorny task. The present review discusses several 
important advances regarding the QSPR approaches used in the development of predictive oral bioavailability models. 
The importance of fixing the problem associated with data resource, as well as improving the reliability of in silico results 
is highlighted. Optimization of individual properties along the absorption process must be integrated in a multi-objective 
scenario for studying oral bioavailability behavior in the early drug discovery and development.  

Keywords: ADMET, QSPR, oral bioavailability, oral absorption, intestinal permeability, drug solubility, CYP3A4 metabolism, 
P-gp efflux.  

INTRODUCTION 

 The process for a new chemical entity (NCEs) to become 
a drug candidate and then reach the market usually involves 
hundreds of millions of dollars of investment and more than 
a decade of research. During this time there are many 
different events, which can halt this development. One of the 
main reasons that prevent a new candidate from becoming a 
prescription drug is a poor pharmacokinetic profile. In the 
90s, some studies showed that ADMET (Absorption, 
Distribution, Metabolism, Excretion and Toxicity) problems 
were responsible for 40% of drug failure, but this value 
decreased substantially to 10% in 2000 [1-3]. 

 On the other hand the use of combinatorial methods 
during the last 20 years has brought about a vast number of 
more lipophilic, less soluble and higher molecular weight 
NCEs than conventional drug entities. These properties are 
often translated into unfavorable absorption, leading to poor 
and erratic bioavailability [4]. The early identification of 
drug bioavailability can assist researchers not only to a better 
selection of candidates for further development by rejecting 
those with lower chance of success [5]. 
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 Even with the advantages of traditional in vivo and in 
vitro methods [6, 7], the experimental measurement of the 
absorption properties is still expensive and time consuming.  
In this context, some in vitro methods have been introduced 
to predict in vivo behavior [8]. Nowadays, these in vitro 
methods can no longer match the demand in throughput as 
the number of compounds that can be generated has 
increased dramatically [9] and  alternative  in silico tools  
have emerged to predict ADMET properties [10, 11], even 
before synthesis. 

 Several computational methods to predict oral absorption 
have been developed. Most of them are focused on 
quantitative structure-property relationship (QSPR) studies, 
using different types of molecular descriptors and statistical 
methodologies. Although the in silico approach has some 
important advantages compared to the experimental 
methodologies, the prediction of complex biological 
properties such as bioavailability is a big challenge due to 
multiple factors involved such as gastrointestinal transit, 
chemical stability in the gastrointestinal tract, intestinal 
permeability and first-pass effect of gut wall and liver 
metabolism [12]. 

 This review article will discuss QSPR approaches used in 
the development of predictive oral drug bioavailability 
models and related absorption properties, their advantages, 
limitations and future challenges in the discovery and 
development of drugs. 
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1. GENERALITIES ABOUT ORAL BIOAVAILABI-
LITY 

 According to the Food and Drug Administration (FDA) 
in the United States and the European Medicine Agency 
(EMA) drug bioavailability is the rate and extent to which 
the active substance or active moiety is absorbed from a 
pharmaceutical form and becomes available at the site of 
action [13, 14]. Based on the unfeasibility of measuring a 
drug’s level at the site of action, the useful definition of 
bioavailability is indeed based on plasma concentrations [4].   

 The bioavailability F of an orally administered dose is 
comprised of the individual fractions that overcome the 
various barriers encountered by the drug during its way 
through the gut lumen and through the liver. Mathematically, 
it can be expressed as a direct relationship, as in the 
following equation: 

 
F = F

a
! F

g
! F

h
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where, Fa represents the intestinal absorption fraction, Fg 
stands for the intestinal first-pass fraction (
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 The experimental approach to estimate oral 
bioavailability in human volunteers or in animal models 
involves the administration of the drug by the intravenous 
route (iv) and the oral one. Plasma levels are measured at the 
adequate sampling points and the area under the curve 
(AUC) is calculated by the trapezoidal method for both 
administrations. It can be demonstrated that AUC

0

!  (from 
time zero to infinity) corresponds to: 

AUC
0

!
=
F * D

Cl
           (2) 

where, D is the dose administered and Cl the drug clearance. 
Taking into account that the availability of the drug from the 
iv administration is complete (100%), systemic 
bioavailability (in extent) Fsys from the oral administration 
can be calculated from the following expression,   

Fsys =

AUCoral

Doral

AUCiv

Div

           (3) 

 The basic assumption in this expression is that clearance 
is the same for both administrations. 

 If the drug has a nonlinear profile, the clearance is not 
constant and therefore F cannot be estimated using the above 
equation. 

In some other instances, intravenous administration is not 
feasible for different reasons. In such cases, the relative 
bioavailability is calculated by comparing the 
pharmaceutical form to another standard (i.e. oral solution): 

Frel =
AUCoral

AUCoralsolution( s tandard )

           (4) 

 As the concept of bioavailability includes not only extent 
but also rate of access to the systemic circulation, parameters 
to compare rate are needed. Regulatory bodies accept the 
maximal plasma level Cmax, and the time at which this level 
is reached tmax. 

 As can be inferred, the bioavailability studies depend on 
drug blood sampling. Standard procedures are set up for 
human volunteers and animal models of enough size and 
weight as dogs, monkeys etc. In smaller animal models, as 
rat or mice, it is usually necessary to permanently cannulate 
the jugular or femoral vein or the use of other sampling 
methods (retro-orbicular, tail, etc) with the consequent 
limitations of the number of samples per animal. In this latter 
case the use of the adequate mathematical procedures for the 
AUC estimation are warranted [15] .  

 In summary, oral bioavailability is a complex property 
that is influenced by many physicochemical and biological 
factors (See Fig. 1). Although all these factors are known, 
their interaction is not always completely clear and only few 
of them have been used to predict bioavailability [16, 17]. In 
this context, reasonably successful in silico models have 
been developed for solubility, intestinal permeability, human 
intestinal absorption (HIA) and first-pass effects (P-
glycoprotein, P-gp and Cytochrome P450, CYP). Some of 
the most relevant results will be described in this review in 
order to highlight their potential use in drug design and early 
drug discovery. 

2. ORAL ABSORPTION PREDICTION 

 Taking into consideration that the F value is the result of 
complex biological mechanisms, the most reasonable 
sequence in oral bioavailability studies should be: (1) 
assessment of the physical diffusion and active transport 
through the membrane followed by (2) prediction of 
subsequent intestinal and hepatic phase-I metabolism. The 
first step is related to physical-chemical properties of the 
drug (stability, pKa, molecular size and solubility), the type 
of transport across the intestinal membrane (passive or active 
uptake) and efflux of compounds across the cell membrane 
(e.g. P-gp and multidrug resistance associated proteins, 
MRPs). The second step is concerned with the determination 
of intestinal and hepatic metabolism mainly produced by 
enzymes of the sub-family of CYP [18], with the CYP3A4 
enzyme being the major determinant of oral bioavailability 
[19, 20]. 

 One of the main challenges for oral drug administration 
is to achieve a maximum absorption through the intestinal 
tract with low intestinal first-pass metabolism. The intestinal 
absorption fraction of a drug (Fa) depends basically on its 
solubility and gastrointestinal permeability. Both properties 
integrate the scientific framework of the Biopharmaceutical 
Classification System (BCS) [21, 22].  

 In drug discovery, therefore, it would be highly desirable 
to be able to separate and quantify distinctly luminal events 
from systemic ones and permeability issues from first-pass 
effects, for individual compounds under investigation [23]. 
Almost all reported studies have dealt with the problem of 
using different computational approaches for prediction of 
individual properties such as solubility, intestinal 
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permeability, human intestinal absorption and the first-pass 
metabolism effects. A summary of the main QSPR models 
for these individual properties, their advantages and 
limitations in the prediction of oral bioavailability will be 
discussed below.  

2.1. SOLUBILITY 

 The solubility of any compound can be defined as the 
amount of substance that has passed into solution when the 
equilibrium between the solution and the excess of 
undissolved substance at a given temperature and pressure is 
attained. Taking into consideration that compounds with 
similar values of aqueous solubility could be administered at 
very different doses, a dimensionless parameter called Dose 
Number (D0) is used to classify drug solubility [24]. This 
parameter is defined as the ratio of drug concentration in the 
administered volume to its saturation solubility in water. 

 Ideally, any computational model to predict the effect of 
solubility on absorption should be based on the concept of 
D0 to better characterize the drug solubility. However, few 
works have studied this parameter quite deeply. Many in 
silico models were developed to predict solubility of non 
drug-like molecules, considering intrinsic solubility as 
experimental data. Although these datasets were comprised 
of molecules with limited structural complexity with respect 
to functional groups and ring systems, the computational 
models obtained have adequate accuracy and predictive 
capacity [25]. Nevertheless, these models have little 
applicability to drug solubility due to the unknown or high 

experimental error, the lack of structural diversity, the non-
consideration of salt and/or common ion issues, the crystal 
packing effects and the poor pharmaceutical relevance or 
inadequate range of solubility [26]. On the contrary, several 
authors obtained models with high level of performance and 
prediction using various small drug-like datasets [27-29]. 

 In order to avoid the limited structural diversity of some 
databases, Delaney [30], Votano et al. [31] and Wang et al. 
[32]  developed good statistical models using large datasets 
(> 2500 compounds) but their predictive capacity should be 
consistently evaluated with large external sets.  Recently, 
Johnson et al. [33] published a QSPR model for the 
prediction of aqueous solubility that includes crystal 
packing, intrinsic solubility, and specific ionization effects. 
This approach suggested a novel method able to address the 
issues related to solubility prediction.  

 Although many efforts have been made to develop good 
computational models for solubility prediction of drug-like 
molecules, the current methods have small datasets and a 
limited predictive applicability compared with non drug-like 
molecule models. Beyond these differences, we consider that 
both types of models are necessary during the drug discovery 
process because of the significant impact of solubility on the 
drug uptake, transport and eventually bioavailability. Models 
for solubility prediction of non drug-like molecules could be 
used during the stage of hit identification while models for 
drug-like molecules would be used during the lead 
optimization process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (1). Schematic representation of oral delivery process of drugs to systemic circulation, which displayed the three pharmacokinetic 
processes (dissolution, permeation though intestinal membrane and first-pass effects herein are efflux and human liver biotransformation) of 
drug via oral absorption. Also this schematic depicted the three main factors defined oral bioavailability (Fa, Fg and Fh) as well as the 
general relationship provided by the Fick’s law (See Eq. 1). 
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Table 1.  Different in silico Models to Predict Solubility 

Reference Modeling 
Methods 

Descriptors Dataset Performance of the Best Model 

Ni
tr+test=1297 Q1

Training=94% 

Q2
Test=88% 

Huuskonen 
et al.[97] 

ANNa Atom-type E-state, topological  

Nii
ext-set=21 Q3

External set=91% 

McElroy 
and Jurs 

[98] 

MLRb 

ANN 

Topological, geometrics, electronic and hybrid 
descriptors 

Ntr+test=399  QTraining=90%  

QTest=88% 

QExternal set=53% 

Ntr+test=1291 QTraining=94% 

QTest=91% 

Tetko et 
al.[99] 

ANN Molecular weight, atom-type E-state 

Next-set=21 QExternal set=90% 

Ntr+test=1312 

 

QTraining=93% 

QTest=93% 

Liu and So 
[100] 

ANN Hydrophilicity, molecular weight and topological 

Next-set=21 QExternal set=89% 

Ntr+test=688 QTraining=90% 

Qvalidation=92% 

QTest set=84% 

Livingstone 
et al. [101] 

MLR 

ANN 

CCAc 

Electrotopological descriptors 

Next-set1=19 

Next-set2=21 

QExternal set 1=91% 

QExternal set 2=86% 

Cheng et 
al. [102] 

GAd/MLR Topological, geometrics and electronic Ntr+test=321 QTraining=95% 

QTest=84% 

Gao et al. 
[103] 

GA/MLR MOE descriptors Ntr+test=1179 QTraining=91% 

QTest=91% 

Ntr+test=3351 QTraining=91% 

QTest=89% 

Engkvist 
and Wrede 

[104] 

ANN Topological and constitutional descriptors 

Next-set=307 QExternal set=86% 

Yan and 
Gasteiger 

[105] 

ANN Topological descriptors Ntr+test=1293 QTraining=92% 

QTest=94% 

Yan and 
Gasteiger 

[106] 

ANN 3D descriptors Ntr+test=1293 QTraining=93% 

QTest=92% 

Cheng and 
Merz [107] 

GA/MLR Constitutional, lipophilicity, topological, atom-
type E-state and Jurs’s charged partial surface 

area parameters 

Ntr+test=775 QTraining=84% 

 

Ntr+test=3328 QTraining=80% 

QTest=74% 

Butina and 
Gola [108] 

PLSe 

Cubist 
method 

Molecular properties, lipophilicity  

Next-set=11 QExternal set=89% 

Manallack 
et al. [109] 

ANN 3D BCUT descriptors Ntr+test=788 QTraining=87.18%  

Schaper et 
al. [110] 

MLR HYBOT descriptors Ntr+test=787 QTraining=94% 

QTest=92% 
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(Table 1). Contd….. 

Reference Modeling 
Methods 

Descriptors Dataset Performance of the Best Model 

Wegner 
and Zell 

[111] 

ANN Topological descriptors, 

electronic descriptors 

Ntr+test=1269 QTraining=94% 

QTest=82% 

Votano et 
al. [31] 

MLR 

ANN 

Constitutional descriptors, 

topological descriptors 

Ntr+test=3343 QTraining=88% 

QTest=77% 

Ntr+test=2874 QTraining=72% Delaney 
[30] 

MLR Physicochemical descriptors 

Next-set=21 QExternal set=85% 

Ntr+test=1290 QTraining=96% Hou et al. 
[112] 

MLR Atom types 

Next-set =21 QTest 1=94% 

Wang et al. 
[113] 

PLS 3D Sybyl 7.0 descriptors, 

physicochemical descriptors 

Niii
total=1708 Q4

ASMS model=87.2% 

Q5
ASMS-LOGP=88.6% 

Huuskonen 
et al. [29] 

MLR Physicochemical descriptors  Ntotal=191 (drug-
like compounds) 

QTraining=87% 

QExternal set 1=80% 

QExternal set 2=88% 

Wang et al. 
[32] 

MLR Atom Type Count, 

3D Surface Area (SAS), 

physicochemical descriptors 

Ntotal=3664 Q6
ASM-ATC-LOGP =83.2% 

Q7
ASM-ATC  Model=82.1% 

Q8
ASM-SAS-LOGP =82.7% 

Q9
ASM-SAS =81.8% 

aArtificial neural network; bmultiple linear regression; ccanonical correlation analysis; dgenetic algorithm; epartial least square; inumber of compounds used for 
training and test set; iinumber of compounds used for external set; iiitotal number of compound used in study; 1,2overall accuracy of correlation or classification 
of training set and/or test set; 3accuracy of prediction of external set; 4-9accuracy of aqueous solubility model based on specified descriptors such as atom type 
counts, ClogP and solvent accessible surface areas. 

2.2. PERMEABILITY 

 Effective permeability (Peff) is one of the parameters 
used to measure rate and extent of intestinal absorption (Fa). 
It is commonly reported as an apparent permeability 
coefficient (Papp or Pm) using different cell culture models 
and is usually reported in cm/s. The most commonly used 
model is the Caco-2 cell which is a human colon carcinoma 
cell line [34]. It is generally accepted that good permeability 
through Caco-2 monolayers is a reliable index of good in 
vivo absorption [35, 36], unless dissolution is a problem. 
This in vitro model has been recommended by the US FDA 
for determination of permeability of compounds to be 
classified according to the BCS [37]. Nevertheless, one of 
the main problems of this in vitro assay is the considerable 
inter- and intra-laboratory variability [38, 39] which makes it 
difficult to combine Caco-2 permeability data from different 
sources to form one large dataset [40]. Several QSPR models 
to predict Caco-2 permeability have been published 
elsewhere (See Table 2).  

 As can be seen in Table 2, different statistical 
methodologies and datasets have been used to develop 
computational models of Caco-2 permeability. Although 
very good regression models have been obtained, we 
consider that the classification model is the best option 
taking into account the great variability in the experimental 
determination of Caco-2 permeability. A good strategy for 

the future development of useful in silico Caco-2 
permeability models is to carry out classification approaches 
using the permeability ranges of compounds with high 
intestinal absorption such as Metoprolol (Fa = 95; Papp > 
20×10−6 cm/s). A possible classification scheme would be: 
Low permeability: Papp < 2×10−6 cm/s; Moderate 
permeability: 2×10−6 < Papp < 20×10−6 cm/s and High 
permeability: Papp > 20×10−6 cm/s [41, 42]. On the other 
hand, the potential of these in silico models in the prediction 
of human intestinal permeability and their application along 
with in silico solubility models is a relevant option to select 
drug candidates with good oral absorption during the early 
drug discovery. 

 The BCS is a scientific framework to understand drug 
absorption in terms of in vitro aqueous solubility and 
intestinal permeability [43]. However, as was previously 
discussed, there has been a considerable research over the 
last decade on in silico methods for prediction either 
solubility or intestinal permeability separately. In this 
context, computational classification models to predict the 
BCS/BDDCS (Biopharmaceutical Drug Disposition 
Classification System) class from molecular structure 
without running expensive and time-consuming in vitro and 
in vivo permeability studies are outstanding [44-47]. Even 
though the results obtained to predict absorption are 
adequate, in our opinion in the future each class of the 
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Table 2. Different in Silico Models to Predict Caco-2 Permeability 

Reference Statistical 
Method 

Descriptors Database Performance of the Best 
Model 

Fujiwara et al. [114] MLRa and ANNb Dipole moment, polarizability and atoms of N, O, 
and H 

Ni
total= 129 Q1

Training=58% 

Yamashita et al. [115] GAc-PLSd Molconn-Z descriptors Ntotal=73 QTraining= 89% 

Q3
cv (LOO) = 83% 

Hou et al. [116] MLR Simple molecular properties Nii
tr = 77 

Niii
test= 23 

QTraining= 82% 

Q2
Test=78% 

Marrero et al.[117] LDAe Atom-based quadratic indices Ntr=134 

Ntest= 12 

QTraining=90.3% 

QTest=83.3% 

Refsgaard et 

al.[118] 

Nearest- 

Neighbor 

Classification 

mLogPa, MWb, HDc, HAd, 

ROTe, cLogPf, VOLg, 

SURFh, PSAi 

380 (Class 0) 

332 (Class 1) 

Niv
ext-set=112  

Q4
Class0 =75.5% 

Q5
Class1 = 88.5% 

Q6
External set=84.6% 

Guangli and Yiyu 
[119] 

SVMf Chemistry Development Kit 

(CDK) descriptors 

Ntr = 77 

Ntest= 23 

QTraining=88% 

QTest=85% 

Di Fenza et al. [120] GA-ANN Volsurf descriptors Ntr-1= 106 

Ntest-1 = 50 

Ntr-2= 101 

Ntest-2= 50 

QTraining1=72% 

Qcv1 (LOO)= 40% 

QTraining2=75% 

Qcv2 (LOO)= 61% 

Castillo-Garit, et al. 
[121]  

LDA 

MLR 

Atom-based non-stochastic 

Linear Indices 

Ntr=138 

Ntest = 19 

Ntr = 77 

Ntest = 23 

QTraining= 90.6% 

QTest= 84.2% 

QTraining= 85% 

QTest=71% 

Paixao et al. [122] ANN ALOGPS 2.1 program 

and e-DRAGON 1.0 descriptors 

Ntr = 192 

Ntest = 59 

Next-set =45 

QTraining= 84% 

QTest= 70% 

QExternal set=77% 

Pham The et al. [42] LDA DRAGON Version 5.4 descriptors Ntr =537 

Ntest =137 

Next-set = 10  

QTraining= 81.6%  

QTest=83.9%  

QExternal set=80.0% 
aMultiple linear regression; bartificial neural network; cgenetic algorithm; dpartial least square; elinear discriminant analysis; fsupport vector machine; itotal number of compound used 
in study; iiNumber of compounds used for training set; iiinumber of compounds used for test set; vinumber of compounds used for external set; 1,2overall accuracy of correlation or 
classification of training set and/or test set; 3accuracy of leave one out cross-validation; 4,5accuracy of prediction of classification models for class 0 and class 1; 6accuracy of 
prediction of external set.  

BCS/BDDCS could be better predicted by means of in silico 
models with information of permeability, solubility, P-gp 
efflux and metabolism, in order to provide useful additional 
insight into bioavailability properties of drugs. 

2.3. Human Intestinal Absorption 

 The first to attain a high oral bioavailability is to achieve 
a good oral absorption [48]. The human intestinal absorption 
(HIA, % oral absorption) is an in vivo measure defined as the 
% dose of orally administered drug to reach the hepatic 
portal vein [49]. It can also be determined as the % of 
urinary excretion of drug-related material following oral 
administration, or the ratio of the total mass absorbed 
divided by the drug dose (% fractional absorption, Fa). Oral 

absorption takes into consideration metabolism that occurs in 
the gut wall, but not first-pass metabolism in the liver.  

 Considering the important role of HIA, the development of 
QSPR models can be very useful to speed up the design of 
new compounds with appropriate HIA profiles, and 
consequently to reduce time and cost in drug discovery and 
developmental processes. This issue has been addressed by 
many authors that reported predictive models for HIA based 
on different molecular descriptors and statistical methods (See 
Table 3). 

 Analysis of Table 3 shows that, similar to permeability 
equations, the classification models show better results in the 
prediction of HIA than numerical ones. Even though large 
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Table 3. Different in Silico Models to Predict Human Intestinal Absorption 

Reference Statistical Method Descriptors Database Performance of the Best 
Model 

Zhao et al. [123] MLRa Abraham descriptors Ni
tr= 31 

Nii
test=138 

Q1
Training = 85%  

Q3
CV = 78% 

Klopman et 
al.[124] 

MLR Substructural molecular descriptors Ntr=417 

Ntest= 50 

QTraining = 79% 

Q2
Test = 79% 

Cabrera-Pérez et 
al.[125] 

LDAb TOPS-MODE descriptors Ntr= 82 

Ntest= 127 

89 % of good classification 

93 % of good classification 

Deconinck et al. 
[126] 

Classification and regression 
trees (CART) 

DRAGON descriptors Ntr=141 

Ntest=27 

Q4
overall = 77.8%-88.9% 

Liu et al.[127] Heurist method (HM) and SVMc CODESSA descriptors Ntr=113 

Ntest=56 

QTraining = 78% (HM) 

QTraining = 86% (SVM) 

QTest = 70% (HM) 

QTest = 73% (SVM) 

Hou[128] - Physicochemical and topological descriptors Ntr= 480 

Ntest = 98 

QTraining = 97.8% (HIA-)  

QTraining = 94.5% (HIA+) 

QTest = 100% (HIA-) 

QTest = 97.8% HIA+ 

Gunturi et 
al.[129] 

k-Nearest neighbors (kNN) 

method along with genetic 
algorithms (kNN-QSAR-GA) 

Structural, physico-chemical, geometrical and 
topological descriptors 

Niii
tr/test=126/49 

Ntr/test=117/58 
Ntr/test=117/58 
Ntr/test=49/126 

Q5
ext= 80% 

Qext= 70% 
Qext= 71% 
Qext= 70% 

Hou et al.[48] 

 
GFA and the multivariate 

adaptive regression splines 
(MARS) 

Recursive partitioning (RP) 

TPSA,MW, Nrot, NHBD, NHBA, log P, log 
D, log S, MV, MR, Nrule-of-5, etc. (W), and 

Zagreb index (Zagreb). 

Ntr = 455 

Ntest = 98 
Ntr = 481 
Ntest = 98 

QTraining = 84% 

QTest = 90% 
96% of good classification 

96.9% of good 
classification 

Iyer et al.[130] GA-MLR; MLR MI-QSAR descriptors Ntr =106 

Ntest =21 

QTraining = 82% 

QTest = 70% 

Yan et al. [131]  PLSd and SVM ADRIANA code, Cerius index Ntr = 380 

Ntest = 172 

QTraining = 72-81% 

QTest = 83-89%  

Reynolds et 
al.[132] 

ADME boxes or algorithm 

builder descriptors 
logPo/w, NHD, Vx, ion fractions (pKa 

function) 
Ntr=567 

N1test=25 
N2test=22 

QTraining = 93% 

QTest1 = 72% 
QTest2 = 84% 

aMultiple linear regression; blinear discriminant analysis; csupport vector machine; dpartial least square; iNumber of compounds used for training set; iinumber of compounds used for 
test set; iiinumber of compounds used for training/test set; 1,2overall accuracy of correlation or classification of training set and/or test set; 3accuracy of prediction of model cross-
validation; 4overall accuracy of classification models for training and test set; 5accuracy of prediction of external set. 

datasets have been used, almost all of them are usually 
collected from drugs or drug candidates in clinical trials. 
These datasets may show significant variability from one 
source to another and often are heavily biased towards 
compounds with high intestinal absorption values because 
most of the compounds reported are commercially available 
drugs [48]. This fact will influence the predictive capacity of 
the in silico models and better predictions will be obtained 
for compounds with high intestinal absorption values 
compared to the rest of the dataset. 

 Another problem is the model capacity to predict the 
intestinal absorption of compounds with active transport 
since most of the models were obtained under assumption 
that compounds of dataset followed a passive absorption 
transport [25].  

 Basically, all descriptors used in QSAR/QSPR analysis 
can be employed in the prediction of intestinal absorption. 
However, those molecular descriptors related with 
physicochemical properties are most relevant and their use 
will allow to gain some insight into factors that are likely to 
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govern the absorption of drugs and to understand which 
interactions play an important role during the absorption 
process. 

 As oral drug absorption is particularly complex, some 
researchers have focused their attention in developing rule 
of-thumb alerts and classification systems to easily identify 
potential absorption problems. The most cited of these alerts 
is the ‘rule of five’ proposed by Lipinski and co-workers, 
that has come to be a compass for the drug discovery 
industry [50]. These authors, after analyzing the 
physicochemical profiles of 2245 orally active drugs from 
the World Drug Index (WDI) [51], concluded that poor 
absorption or permeation is more likely when two of the 
following conditions are fulfilled: molecular weight (MW) > 
500; H-bond acceptors (HBA) n > 10; H-bond donors (HBD) 
n > 5 and calculated log P (ClogP) > 5. A modification of 
this rule was proposed by Congreve et al. [52], which 
assumed other cutoffs for physicochemical properties [MW 
≤ 300, HBA ≤ 3, HBD ≤ 3, ClogP ≤ 3, number of rotatable 
bonds (RTB) ≤ 3, polar surface area PSA ≤ 60] to design 
fragment libraries for fragment - based lead generation. 

 After the ‘rule  of  five’, many attempts were made to 
generate rules-of-thumb to identify well-absorbed 
candidates. Veber et al. proposed a set of rules based on rat 
oral bioavailability data which states that either (i) PSA 
≤140Å2 and number of rotatable bond ≤10 or (ii) sum of H-
bond donors and acceptors ≤ 12 and number of rotatable 
bond count ≤10 are efficient and selective criteria to discover 
orally available drugs of high molecular weight [53]. Similar 
results were confirmed by Lu et al. when studied a dataset of 
434 molecules with values of oral bioavailability in rats [54]. 
In 2007, Hou et al. examined Veber’s rule on a dataset of 
773 compounds and demonstrated that these simple rules 
based on rat oral bioavailability data can not be used to 
predict adequately human oral bioavailability [55]. 

 On the other hand, the rules of thumb like “rule of five” 
should be used with care to avoid the possible exclusion of 
promising compounds [51].  Recently, Giménez et al. 
evaluated around 60 blockbuster drugs (promising marketing 
drugs) and demonstrated that about 89% of successful drugs 
were out of the thresholds of the “rule of five” [56]. Other 
results confirm this statement, for example a study of 1204 
US FDA approved small-molecule drugs revealed that only 
885 drugs (73%) passed the “rule of five” and 70% of them 
(619 drugs) are used orally [57]; the 68.7% of the 
compounds in ACDSD (ACD Screening Database, 2.4 
million compounds) and 55% of the compounds in ACD 
(240 thousand compounds) have no violation of the rule of 
five [58]. This figures point out that “rule of five” only 
provides a basic orientation about the possibilities of a 
molecule to be drug-like. 

3. INTESTINAL AND HEPATIC PHASE-1 META-
BOLISM PREDICTION 

 Oral bioavailability involves complex biological 
mechanisms that may reduce the fraction absorbed, i.e. 
efflux and/or first-pass metabolism. It is well known that 
both CYP3A isoenzymes and efflux proteins such as 
ABCB1/ P-gp are major determinants of oral bioavailability 

[19, 20]. The structural identification of CYPs and P-gp 
substrates, inhibitors or inducer agents has become an 
attractive field of QSPR application to improve the 
predictability on drug´s bioavailability. Many authors have 
suggested that CYP3A4 and P-gp act in a coordinated 
manner. This theory is based on their location in the small 
intestine enterocytes and the overlapping in their specificities 
for substrates. Nevertheless, no correlation between the 
tissue levels of CYP3A and P-gp has been found in human 
enterocytes [59] and the same occurs if the concentration of 
CYP3A in the intestine is compared with the enzyme levels 
in the liver [60].  

 In the following section we will focus in some important 
approaches to QSPR modeling of intestinal and hepatic first-
pass effects and the main achievements and limits of existing 
strategies. 

3.1. Cytochrome P450 (CYP) 3A4 

 CYP are the main enzymes involved in the 
biotransformation of drugs and other xenobiotics. They 
comprise a superfamily of hemeproteins that is subdivided 
into 18 families and 43 subfamilies. However, only three 
main P-450 gene families, CYP1, CYP2, and CYP3 are 
thought to be responsible for drug metabolism. Among these, 
CYP3A (CYP3A4 and 3A5) and CYP2C (CYP2C8, 2C9, 
2C18 and 2C19) are the most abundant subfamilies, 
accounting for 30% and 20% of total CYP, respectively [61]. 
In adults, CYP3A4 is the dominant CYP3A isoform in the 
human small intestine and liver, which is present in more 
than 60% of the total CYP of the liver and often more than 
70% of the enterocyte [62]. Although CYP3A4 preferentially 
catalyzes the oxidation of lipophilic neutral or basic 
compounds, its hydrophobic active site is capable of 
accommodating a wide range of structures, from simple and 
rigid steroids to macromolecules [63]. CYP3A4 is involved 
in the metabolism of approximately half of the drugs which 
are used nowadays [61]. Thus CYP3A4 inhibition should be 
well attractive for oral drug bioavailability enhancement, 
especially for carcinogens (cancer chemoprevention 
strategy). However, some drawbacks such as the variations 
in the catalytic activity and the limited experimental data 
restrict the general applicability of QSPR models.   

 Different computational methodologies such as three-
dimensional quantitative structure–metabolism relationships 
(3D-QSMRs) [64-67], mechanistic models [68, 69] and 
MetaSite [70] have been used to model CYP3A4, being the 
QSPR model for 3A4 one of the better choice. Some of the 
more relevant models to classify CYP3A4 substrates and/or 
inhibitors are depicted in Table 4. 

 QSPR models for predicting the site of compound 
metabolism have undergone significant advances during the 
past years [71, 72] (See Table 4). Three main issues (data, 
model and prediction) arise with the development and 
prediction of metabolism by QSPR models.  

 For the first issue the main problems are related with data 
reproducibility due to the limited size of datasets and 
different threshold inputs in the kinetic parameters such as 
IC50, Vmax, Kmax and intrinsic clearance (Clint) which makes it 
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Table 4. In-Silico Models for CYP3A4-Mediated Drug Metabolism Prediction 

Authors Methods Descriptors Dataset Overall 
Accuracy 

Metabolized 
Agents 

Molnár and 
Keserü [133] 

ANNa 2D descriptors Genetest 
database 

90% Inhibitors 

Ekins et al.[134] RPb (tree) 2500 Chemtree atom descriptors 1756 82% Inhibitors 

Korolev et al. 
[135] 

Kohonen self-organizing 
maps (SOM) 

26 physicochemical descriptors 2200  76.7% 

62.7% 

Substrates 

Products 

Merkwirth et 
al.[136] 

Ensemble 

 k-NNc, SVMd, and ridge 
regression 

- 410 88% Low inhibitors 

High inhibitors 

Balakin et al.[137] ANN Physicochemical descriptors, sum of the 
squares of vertex valencies 

491 91% 

97% 

High K1
m 

Low Km 

Yap and 
Chen[138] 

Consensus SVM Dragon descriptors 609 96% 

95% 

Inhibitors 

Substrates 

SVM classification 76% 

67% 

77% 

Kriegl et al.[139] 

SVM regression 

2-D descriptors 

VolSurf descriptors 

AM1 quantum indices 

1345 

51% 

strong inhibitors 

medium 
inhibitors 

weak inhibitors 

Yap et al.[140] SVM  

LRe 

LDAf 

PLSg 

C4.5 DTh 

k-NN 

P-NNi 

Dragon descriptors - 94.6% 

87.8% 

48.6% 

90.5% 

87.8% 

98.6% 

87.8% 

Inhibitors 

Substrates 

Pharmacophore method* - 

RP (tree)  75-95% 

LR 92% 

Regression tree <65% 

Jones et al.[141] 

LMRk 

Lipophilicity, molecular Weight 54 

<40% 

Substrates 

Unknown-
substrates 

379 90% Terfloth et al. 
[142] 

LR decision tree 

SVM 

Molecular properties, 

topological descriptors 233 external 
set 

83% 

Substrates 

Feher and  Ewing 
[73] 

PLS Physicochemical descriptors, fraction 

positive and negative ionization at pH 7.4 

4224 80-85% Inhibitors 

 
aArtificial neural network; brecursive-partitioning (tree); ck-nearest neighbor; dsupport vector machine; elogistic regression; flinear discriminant analysis; gpartial 
least square; hC4.5 algorithm and multivariate decision trees; ipolynomial neural network; kmultiple linear regression; 1Michaelis-Menten constant; 
*pharmacophore method capable to predict metabolic intermediate complex (MIC) formation with CYP3A4 (+b5). 

difficult to compare different models and impossible to 
combine datasets [73]. 

 Concerning the model issue, it is important to remark that 
drug metabolism is an extremely complex pharmacokinetic 
process being very difficult to obtain accurate modeling of 

the drug-metabolic enzyme interactions. Not one modeling 
technique is consistently better than the others; for this 
reason, the use of combined models could improve the 
metabolism prediction (see Table 4). Some output 
combinations of QSPR models with pharmacophore-based 
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Table 5. In Silico Models for P-gp Substrate/Inhibitor Prediction 

Authors Methods Descriptors  Number of 
Compounds  

Overall Accuracy Interaction 

Q1
subs= 82% Substrates 

Q2
inh= 72% Inhibitors 

Bain et al.[ 143] Classification Number of rings, molecular 
weight (MW), logP, hydrogen-

bond (H-Bond) 

Ni = 44 

Q3
Non-int=89% Non-interaction 

Österberg and 
Norinder [144] 

PLSa MolSurf descriptors N = 22 Q4
overall= 51% Substrates 

Bakken and Jurs 
[145] 

GAb/LDAc Topological,  

geometric, 

polar surface, 

N = 609 Qoverall=83-92% Inhibitors 

 

Dearden et al. 
[146] 

MLRd ClogP, topological, H-bond N = 22 Qoverall=74.2% Substrates 

Österberg and 
Norinder [147] 

PLS LogP, MW, molar refraction, 
molar volume, parachor, 

polarizability, density 

N = 29 Qoverall=62.7-70.6% Substrates 

Nii
Set1= 27 Q5

set1= 77% 

NSet2=21 Qset2= 88% 

NSet3=17 Qset3= 86% 

Ekins et al. 
[148]  

pharmacophore model Catalyst version 4.5 index 

NSet4=18 Qset4= 76% 

Inhibitors 

Onishi et al. 
[149]  

MLR Fragment codes  N = 41 Qoverall= 95.2%-95.4% Substrates 

Wang et al. 
[150]  

MLR 2D descriptors 

3D descriptors 

NSet1=22 

NSet2=16 

NSet3=11 

Qset1=86.3% 

Qset2=74.2% 

Qset3=73.6% 

Inhibitors 

Substrates 

N = 201 QSubs= 81.2% Substrates Xue et al.[ 82] SVMe Simple molecular 

properties, molecular connectivity 

and shape, electrotopological 

state, quantum 

chemical properties, geometrical 

 Q6
Non-Subs=79.2% Non-substrates 

Gombar et al. 
[81] 

LDA MW, H-bond, lipophilicity, 
electrotopological,  molecular 

bulk, molar 

refraction 

N= 153 

(95/58) 

Qoverall=86.2% Substrates 

Qinh=80.8% Inhibitors Wang et al. 
[151] 

Kohonen self-organizing 
maps (SOM) 

Molecular connectivity, 
electrotopological state, H-bond 

N= 206 

QSubs=83.3% Substrates 

Cianchetta et al. 
[152] 

PLS/ 

pharmacophore model 

Physicochemical-based 
descriptors 

N= 129 Qoverall=74% Substrates 

Lima et al. [85] k-NNf, decision tree, 
binary QSAR, 

and SVM 

Molecular connectivity, atom pair, 
VolSurf descriptors, molecular 

operation environment 

N= 195 Q7
tr=88-94% 

Q8
test=81% 

 

Substrates 

Authors Methods Descriptors  Number of 
compounds  

Overall accuracy Interaction 
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(Table 5). Contd….. 

Authors Methods Descriptors  Number of 
Compounds  

Overall Accuracy Interaction 

Niii
Tr= 53 Qtr= 88.7% Crivori et al. 

[153] 
PLSDg VolSurf descriptors 

Niv
test=272 Qtest= 72% 

Inhibitors 

Substrates 

N= 163 Qoverall=80.9% Cabrera et al.[ 
83] 

LDA TOPS-MODE topological 
descriptors 

Nv
ext= 40 Q9

ext=77.5% 

Substrates 

N= 203 Qoverall=95.5% Huang et al. 
[84] 

MLR 

SVM 

Dragon descriptors (0D-3D) 

Next= 40 Qext=93% 

Substrates 

Correlation: 

R2=0.48 

Enhanced 

R2=0.68 Low inhibitory 

Sheu et al. [154] MLR Physicochemical-based 
descriptors 

N= 22 

R2=0.59 High inhibitory 

Estrada et al.[ 
155] 

- TOPS-MODE topological 
descriptors 

- 

Next= 177 

Statistically significant 

Qext=81.8% 

Substrates 

aPartial least square; bgenetic algorithm; clinear discriminant analysis; dmultiple linear regression; esupport vector machine; fk-nearest neighbor; gpartial least squares discriminant 
analysis; ioverall training and test set to model building; iidifferent sets of compounds belonging to the same structural family or metabolism action; iiinumber of compounds used for 
training set; vinumber of compounds used for test set; vnumber of compounds used for external test set; 1-3,6accuracy of classification model for substrates, inhibitor and non-interaction 
compounds or non-substrates; 4,7-9overall accuracy of correlation or classification of training set and/or test set and external set; 5accuracy of local model for a specified group of 
compounds. 

approaches or docking methods might give the best overall 
models assisting in the design of new drugs [73, 74].  

 Finally, the prediction issue considers that the accuracy 
of model prediction must be experimentally validated. 
Therefore, suitable methods and species should be selected 
with precautions. Models based on data from a specific 
species cannot be evaluated through experiments on other 
species due to the lack of correlation. As a primary cause of 
the data deviations, Iwatsubo et al. suggested that 
interindividual variability of in vitro values should be 
corrected by using a scaling factor estimated from the 
metabolism of typical substrates [75].  

3.2. P-Glycoprotein (P-gp) 

 P-gp is an ATP-dependent efflux transporter that affects 
the absorption, distribution and excretion of some clinically 
important drugs [76]. Because of the broad impact of this 
drug efflux transporter on in vivo disposition and 
pharmacokinetics, the identification of compounds that are 
P-gp substrates can help with the selection and the 
optimization of new drug candidates in the early stage of 
drug development [77]. Several “in silico” approaches have 
been developed to classify compounds as P-gp substrates 
[78-85]. However, no single QSPR or pharmacophore model 
can describe the spatial arrangement of structural features 
responsible for substrate and inhibitor affinity [78, 86].  

 As can be seen in Table 5, most of the current works are 
based on relative small databases and their performances still 
need to be improved. Similar to QSPR models of CYP3A4, 
the P-gp predictions have been developed without 
considering their relationship with oral bioavailability, which 
limit their applicability during the drug discovery process.  A 

good strategy to get insight of the role of P-gp on drug 
bioavailability could be to develop in silico models of P-gp 
substrates combined with computational models of solubility 
and permeability. 

 On the other hand, rule-based approaches should receive 
significant attention because a filter prior to screening a large 
dataset is needed. Considering the active efflux alone, 
Didziapetris et al. used a set of 220 compounds and 
proposed the “rule of four” [87],  which states that 
compounds are likely to be efflux substrates if they have a 
hydrogen bond acceptor count (sum of N and O atoms) ≥ 8, 
MW > 400 and an acid group with pKa > 4. Conversely, 
compounds are likely to be non-substrates if they have an 
acceptor count ≤ 4, MW < 400 and a base witpKa < 8. 
Gleeson reported that neutral or basic molecules showing a 
MW > 400 and a logP > 4 are more likely to be transported 
by P-gp than acidic or zwitterionic compounds [88]. 

4. ORAL BIOAVAILABILITY PREDICTION 

 During the last ten years, different computational models 
to predict oral bioavailability have been reported (See Table 
6). These predictions are much more difficult than those for 
intestinal absorption or permeability because oral 
bioavailability primarily depends on a superposition of 
intestinal absorption and first-pass metabolism.  On the other 
hand, the previous discussed QSPR models for individual 
properties related to oral bioavailability such as solubility, 
intestinal permeability, human intestinal absorption and 
substrates of P-gp and/or CYP3A4 are not able to explain the 
multi-factorial nature of oral bioavailability. At this point an 
important question arise: Is it better to use specific or 
integral QSPR methodologies for the prediction of oral 
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bioavailability? Finding a clear answer to this question is 
still a challenge!  

 From these models one can see the difficulty encountered 
when establishing a relationship between oral bioavailability 
and simple molecular descriptors. Some authors have tried to 
improve the bioavailability prediction including 
experimental absorption data such as HIA as a descriptor of 
the bioavailability model [89]. This strategy has been carried 
out to skip all the initial factors related to drug dissolution 
and absorption processes. However, the same authors have 
pointed out that experimental HIA values are still difficult to 
obtain, being available for only a limited set of compounds. 
In this situation, the use of HIA values predicted by a 
computational model is mandatory. Other authors suggest 

using nonlinear learning method to overcome the problem of 
bioavailability prediction [90].  

 Although relatively large datasets have been used to 
develop in silico models of human oral bioavailability, the 
results achieved are not really good. In some models the 
predictive capacity is questionable due to the low correlation 
of the cross-validation and in others the kind of descriptor 
limits the interpretation of bioavailability.   

5. PERSPECTIVES AND CONCLUSIONS 

 The prediction of ADME properties has always been 
challenge for drug design researchers. During the last decade 
many attempts have been made to explore the quantitative 
and/or qualitative relationship of structure-oral 
bioavailability and different predictive results have been 

Table 6. Different in Silico Models to Predict Oral Bioavailability 

Reference Statistical Method Descriptors Database Performance of the 
Best Model 

Andrews [94] MLRa 85 fragment   Ni= 591 Q1
training= 0.71 

Q3
CV (LOO)= 0.63 

Q4
CV (LGO)= 0.58 

(80/20) 

Yoshida [156] ORMUCSb method LogD6.5, (logD6.5)2, ∆logD, and 
15 fragment  

Niii
tr= 232 

Niv
test= 40 

Qtraining= 71%  
QCV (LOO)= 67%  

Qtest= 60%  

Turner [157]  MLR Physicochemical properties, topological, constitutional, 
geometrical and quantum chemical descriptors 

Ntr= 159 
Ntest= 10 

Qtraining= 0.35 
QCV (LOO)= 0.25 

Q2
test= 0.72 

Pintore [91] Adaptive fuzzy 
partitioning 

Ten molecular descriptors Nii
Data1= 

272 
NData2= 

432 

Qtraning1= 82%  
Qvalidation1 = 75%  

Qtest1= 40%  
Qtraning2= 70%  

Qvalidation2 = 68%  
Qtest2= 64%  

Turner [92] ANNc Physicochemical properties, topological, constitutional, 
geometrical and quantum chemical descriptors 

N= 167 

 

Qtraining=0.74 

Qvalidation = 0.90  
Qtest= 0.68 

Wang [58] GAd-QSPR Multiple molecular descriptors N= 577 Qtraining= 0.55 

QCV (LGO)= 0.42 
(90/10) 

Hou [55] MLR Molecular properties N=678 No good rules for 
predicting 

oral bioavailability 

Moda et al. [93] HQSPR (hologram) Multiple molecular descriptors Ntr=250 

Ntest=52 

Qtraining= 0.93 

QCV = 0.70 
Qtest= 0.85 

Chang-Ying et 
al. [90] 

GA-CGe-SVMf Multiple molecular descriptors Ntr=690 
Ntest=76 

Qtraining= 0.80 
Qtest= 0.86 

aMultiple linear regression; bordered multicategorical classification method using the simplex technique; cartificial neural network; dgenetic algorithm; econjugate gradient;  fsupport 
vector machine; i,ii ioverall of  training and test set to model building; iiinumber of compounds used for training set; vinumber of compounds used for test set; 1,2overall accuracy of 
correlation or classification of training set and/or test set; 3,4accuracy of leave-one-out cross-validation or leave-group-out cross validation. 
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achieved [53-55, 58, 89, 91-93]. Nowadays there is an 
ongoing discussion regarding the generation of new in silico 
models to predict oral human bioavailability or to refine the 
reported models including information related to absorption 
and metabolic processes.  

 Several factors are involved in the poor computational 
prediction of oral bioavailability and most of them are 
related to the experimental dataset, the molecular descriptors 
or the statistical methodology used to obtain the models. 
Concerning datasets, the main problem is their small size and 
the lack of extensive and reliable experimental data. In the 
first case, the models have a limited predictive capacity due 
to the poor structural variability of compounds in the training 
sets while the second one points out the need to develop 
reliable and reproducible absorption models. Some models 
have been developed using extensive and reliable datasets 
belonging to big pharmaceutical companies [53, 94]. 
Unfortunately raw data was not available to the scientific 
community, which limited the possibility to obtain better 
predictive absorption models. Recently, two extensive 
databases were published (http://modem.ucsd.edu/adme/ and 
http://miro.ifsc.usp.br/pkdb/), bringing some opportunities to 
study the different absorption properties and to increase, in 
the future, the quality of prediction models.  

 Different molecular descriptors have been used to explain 
the relationship between chemical structure and oral 
bioavailability but none characterize effectively the first-pass 
metabolism [95]. Concerning this, some authors have 
suggested the introduction of new rules or molecular 
descriptors to improve the in silico bioavailability models 
[48, 55]. In this case, the use of topological descriptors with 
fragment/bond information like TOPS-MODE [96] could be 
interesting in the prediction of oral bioavailability.  

 In our opinion, the use of a dataset, carefully selected, 
with information about the most important processes 
involved in bioavailability in order to develop different 
models (consensus model) to predict oral bioavailability can 
be a valuable strategy. For example, select compounds with 
F and HIA values reported, and classify the dataset 
considering from these compounds those that are or not 
substrates of P-gp (efflux process) and/or substrates of 
CYP3A4 (intestinal and hepatic metabolism). 

 In this sense, we want to highlight several important 
aspects to be considered in the future development of 
bioavailability computational models:  

1. The quality and quantity of available databases built 
from reliable experimental assays have to be improved.  

2. The inter- and intra-laboratory variability has to be 
taken into account with an appropriate judgment. 

3. The active transport should be considered.  

4. The combination of two or more models for the same 
property, based on different principles, could provide a 
high confidence in the outcome and assist decision-
making. The new era of QSPR should pave the way for 
a multi-objective optimization with novel technologies 
applied in oral bioavailability problem. 

5. In silico results must be validated at least by in vitro 
experimental assays, and if possible, also by in situ and 
in vivo assays.  

 In this review, we have executed an intensive analysis of 
progress of computational models in the prediction of oral 
bioavailability and related properties. The main factors that 
affect the absorption process have also been discussed to 
reveal that oral absorption is a multi-factorial process and its 
prediction can be divided into three independent tasks: (1) 
prediction of solubility related dose of drug; (2) estimation 
of intestinal permeability and (3) development of an 
adequate tool to identify substrate structure of efflux and 
biotransformation, especially by CYP450, in human. 
Although significant efforts have been made in the use of in 
vivo, in situ and in vitro assays to predict absorption and 
bioavailability, in silico methods to predict these 
characteristics are expected to decrease time and money 
consuming experiments and to increase the power of screen 
compounds prior to synthesis.   

 Finally, it is important to mention that in silico prediction 
of oral bioavailability is really complex and although novel 
approaches have been carried out, the development of 
reliable and predictive in silico tools is still a challenge for 
the computational design experts. 

ACKNOWLEDGEMENTS 

 The authors acknowledge financial support of Agencia 
Española de Cooperación Iberoamericana para el Desarrollo 
(AECID) to the project D/024153/09: Montaje de un 
laboratorio de Química Computacional, con fines 
académicos y científicos, para el diseño de potenciales 
candidatos a fármacos, en enfermedades de alto impacto 
social and the project DCI-ALA/ALFA III (2010) 29: Red 
para el desarrollo de metodologías biofarmacéuticas 
racionales que incrementen la competencia y el impacto 
social de las Industrias Farmacéuticas Locales. (Red-
Biofarma) M.A.C.P also thanks to the program: Estancias de 
movilidad de profesores e investigadores extranjeros en 
centros españoles (SAB2009-0106), developed at Miguel 
Hernández University and to Christiane Mathes for 
reviewing the English text. 

REFERENCES 
[1] Prentis, R.A.; Lis, Y.; Walker, S.R., Pharmaceutical innovation by 

the seven UK-owned pharmaceutical companies (1964-1985). Br J 
Clin Pharmacol, 1988, 25(3), 387-396. 

[2] Kennedy, T., Managing the drug discovery/ development interface. 
Drug Discov Today, 1997, 2, 436-444. 

[3] Kubinyi, H., Drug research: myths, hype and reality. Nat Rev Drug 
Discov, 2003, 2(8), 665-668. 

[4] Han van de Waterbeemd; Testa, B. Drug Bioavailability. 
Estimation of Solubility, Permeability, Absorption and 
Bioavailability. Second ed. WILEY-VCH: Weinheim, 2008. 

[5] Hou, T.; Li, Y.; Zhang, W.; Wang, J., Recent developments of in 
silico predictions of intestinal absorption and oral bioavailability. 
Comb Chem High Throughput Screen, 2009, 12(5), 497-506. 

[6] Manitpisitkul, P.; White, R.E., Whatever happened to cassette-
dosing pharmacokinetics? Drug Discov Today, 2004, 9(15), 652-
658. 

[7] Artursson, P.; Palm, K.; Luthman, K., Caco-2 monolayers in 
experimental and theoretical predictions of drug transport. Adv 
Drug Deliv Rev, 2001, 46(1-3), 27-43. 

[8] Li, A.P., Screening for human ADME/Tox drug properties in drug 
discovery. Drug Discov Today, 2001, 6(7), 357-366. 



QSPR in Oral Bioavailability Mini-Reviews in Medicinal Chemistry, 2012, Vol. 12, No. 6    547 

[9] Nordqvist, A.; Nilsson, J.; Lindmark, T.; Eriksson, A.; Garberg, P.; 
Kihlen, M., A General Model for Prediction of Caco-2 Cell 
Permeability. QSAR Comb Sci, 2004, 23, 303-310. 

[10] Roberts, S.A., High-throughput screening approaches for 
investigating drug metabolism and pharmacokinetics. Xenobiotica, 
2001, 31(8-9), 557-589. 

[11] Avdeef, A. Absorption and Drug Development: Solubility, 
Permeability, and Charge State. John Wiley & Sons, Inc, 2003. 

[12] Burton, P.S.; Goodwin, J.T.; Vidmar, T.J.; Amore, B.M., 
Predicting drug absorption: how nature made it a difficult problem. 
J Pharmacol Exp Ther, 2002, 303(3), 889-895. 

[13] http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/ 
CFRSearch.cfm?CFRPart=320. (17 February),  

[14] http://www.emea.europa.eu/pdfs/human/ewp/140198en.pdf. (10 
February),  

[15] Navarro-Fontestad, C.; Gonzalez-Alvarez, I.; Fernandez-Teruel, C.; 
Bermejo, M.; Casabo, V.G., A new mathematical approach for the 
estimation of the AUC and its variability under different 
experimental designs in preclinical studies. Pharm Stat, 2011, in 
press. 

[16] Lin, J.H.; Chiba, H.; Baillie, T.A., Is the role of the small intestine 
in first-pass metabolism overemphasized? Pharmacol Rev., 1999, 
51(2), 135-158. 

[17] Chaturvedi, P.R.; Decker, C.J.; Odinecs, A., Prediction of 
pharmacokinetic properties using experimental approaches during 
early drug discovery. Curr Opin Chem Biol, 2001, 5(4), 452-463. 

[18] Wacher, V.J.; Salphati, L.; Benet, L.Z., Active secretion and 
enterocytic drug metabolism barriers to drug absorption. Adv Drug 
Deliv Rev, 2001, 46(1-3), 89-102. 

[19] Kharasch, E.D.; Walker, A.; Hoffer, C.; Sheffels, P., Evaluation of 
First-Pass Cytochrome P4503A (CYP3A) and P-Glycoprotein 
Activities Using Alfentanil and Fexofenadine in Combination. J 
Clin Pharmacol, 2005, 45(1), 79-88. 

[20] Benet, L.Z.; Cummins, C.L., The drug efflux-metabolism alliance: 
biochemical aspects. Adv Drug Deliv Rev, 2001, 50 Suppl 1, S3-11. 

[21] Amidon, G.L.; Lennernas, H.; Shah, V.P.; Crison, J.R., A 
theoretical basis for a biopharmaceutic drug classification: the 
correlation of in vitro drug product dissolution and in vivo 
bioavailability. Pharm Res, 1995, 12(3), 413-420. 

[22] FDA Guidance for Industry: Federal Drug and Food 
Administration: Rockville, MD, 2002. 

[23] Kwan, K.C., Oral bioavailability and first-pass effects. Drug Metab 
Dispos, 1997, 25(12), 1329-1336. 

[24] Oh, D.M.; Curl, R.L.; Amidon, G.L., Estimating the fraction dose 
absorbed from suspensions of poorly soluble compounds in 
humans: a mathematical model. Pharm Res, 1993, 10(2), 264-270. 

[25] Norinder, U.; Bergstrom, C.A., Prediction of ADMET Properties. 
ChemMedChem, 2006, 1(9), 920-937. 

[26] Johnson, S.R.; Zheng, W., Recent progress in the computational 
prediction of aqueous solubility and absorption. Aaps J, 2006, 8(1), 
E27-40. 

[27] Bergstrom, C.A.; Wassvik, C.M.; Norinder, U.; Luthman, K.; 
Artursson, P., Global and Local Computational Models for 
Aqueous Solubility Prediction of Drug-Like Molecules. J Chem Inf 
Comput Sci, 2004, 44(4), 1477-1488. 

[28] Ghasemi, J.; Saaidpour, S., QSPR prediction of aqueous solubility 
of drug-like organic compounds. Chem Pharm Bull (Tokyo), 2007, 
55(4), 669-674. 

[29] Huuskonen, J.; Livingstone, D.J.; Manallack, D.T., Prediction of 
drug solubility from molecular structure using a drug-like training 
set. SAR QSAR Environ Res, 2008, 19(3-4), 191-212. 

[30] Delaney, J.S., ESOL: estimating aqueous solubility directly from 
molecular structure. J Chem Inf Comput Sci, 2004, 44(3), 1000-
1005. 

[31] Votano, J.R.; Parham, M.; Hall, L.H.; Kier, L.B.; Hall, L.M., 
Prediction of aqueous solubility based on large datasets using 
several QSPR models utilizing topological structure representation. 
Chem Biodivers, 2004, 1(11), 1829-1841. 

[32] Wang, J.; Hou, T.; Xu, X., Aqueous solubility prediction based on 
weighted atom type counts and solvent accessible surface areas. J 
Chem Inf Model, 2009, 49(3), 571-581. 

[33] Johnson, S.R.; Chen, X.Q.; Murphy, D.; Gudmundsson, O., A 
computational model for the prediction of aqueous solubility that 
includes crystal packing, intrinsic solubility, and ionization effects. 
Mol Pharm, 2007, 4(4), 513-523. 

[34] Hidalgo, I.J.; Raub, T.J.; Borchardt, R.T., Characterization of the 
human colon carcinoma cell line (Caco-2) as a model system for 
intestinal epithelial permeability. Gastroenterology, 1989, 96(3), 
736-749. 

[35] Yamashita, S.; Tanaka, Y.; Endoh, Y.; Taki, Y.; Sakane, T.; Nadai, 
T.; Sezaki, H., Analysis of drug permeation across Caco-2 
monolayer: implication for predicting in vivo drug absorption. 
Pharm Res, 1997, 14(4), 486-491. 

[36] Yee, S., In vitro permeability across Caco-2 cells (colonic) can 
predict in vivo (small intestinal) absorption in man--fact or myth. 
Pharm Res, 1997, 14(6), 763-766. 

[37] Wahlang, B.; Patil, S.R.; Pawar, Y.B.; Bansal, A.K., The Caco-2 
Cell Model: A useful Tool in Drug Dicovery and Development. 
CRIPS, 2009, 10(2), 29-34. 

[38] Delie, F.; Rubas, W., A human colonic cell line sharing similarities 
with enterocytes as a model to examine oral absorption: advantages 
and limitations of the Caco-2 model. Crit Rev Ther Drug Carrier 
Syst, 1997, 14(3), 221-286. 

[39] Artursson, P.; Palm, K.; Luthman, K., Caco-2 monolayers in 
experimental and theoretical predictions of drug transport. Adv 
Drug Deliv Rev, 1996, 22, 67-84. 

[40] Yamashita, F.; Fujiwara, S.; Hashida, M., The "latent membrane 
permeability" concept: QSPR analysis of inter/intralaboratory 
variable Caco-2 permeability. J Chem Inf Comput Sci, 2002, 42(2), 
408-413. 

[41] Kerns, E.H.; Di, L. Drug-like Properties: Concepts, Structure 
Design and Methods: from ADME to Toxicity Optimization. 
Elsevier’s Science & Technology Rights Department in Oxford: 84 
Theobald’s Road, London WC1X 8RR, UK, 2008. 

[42] Pham-The, H.; González-Álvarez, I.; Bermejo, M.; Mangas, V.; 
Centelles, I.; Garrigues, T.M.; Cabrera-Pérez, M.A., In-silico 
prediction of Caco-2 cell permeability by a classification QSAR 
approach. Mol Inf. , 2011, 30(4), 376-385. 

[43] Wu, C.Y.; Benet, L.Z., Predicting drug disposition via application 
of BCS: transport/absorption/ elimination interplay and 
development of a biopharmaceutics drug disposition classification 
system. Pharm Res, 2005, 22(1), 11-23. 

[44] Bergstrom, C.A.; Strafford, M.; Lazorova, L.; Avdeef, A.; 
Luthman, K.; Artursson, P., Absorption classification of oral drugs 
based on molecular surface properties. J Med Chem, 2003, 46(4), 
558-570. 

[45] Bergstrom, C.A., In silico predictions of drug solubility and 
permeability: Two rate-limiting barriers to oral drug absorption. 
Basic Clin Pharmacol Toxicol, 2005, 96, 156-161. 

[46] Khandelwal, A.; Bahadduri, P.M.; Chang, C.; Polli, J.E.; Swaan, 
P.W.; Ekins, S., Computational models to assign biopharmaceutics 
drug disposition classification from molecular structure. Pharm 
Res, 2007, 24(12), 2249-2262. 

[47] Kasim, N.A.; Whitehouse, M.; Ramachandran, C.; Bermejo Sanz, 
M.; Lennernas, H.; Hussain, A.S.; Junginger, H.E.; Stavchansky, 
S.A.; Midha, K.K.; Shah, V.P.; Amidon, G., Molecular Properties 
of WHO Essential Drugs and Provisional Biopharmaceutical 
Classification. Mol Pharm, 2004, 1(1), 85-96. 

[48] Hou, T.; Wang, J.; Zhang, W.; Xu, X., ADME evaluation in drug 
discovery. 7. Prediction of oral absorption by correlation and 
classification. J Chem Inf Model, 2007, 47(1), 208-218. 

[49] Sinko, P.J., Drug selection in early drug development: screening 
for acceptable pharmacokinetic properties using combined in vitro 
and computational approaches. Curr Opin Drug Discov Devel, 
1999, 2(1), 42-48. 

[50] Tsaioun, K.; Bottlaender, M.; Mabondzo, A., ADDME - Avoiding 
Drug Development Mistakes Early: central nervous system drug 
discovery perspective. BMC Neurol, 2009, 9 Suppl 1, S1. 

[51] Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J., 
Experimental and computational approaches to estimate solubility 
and permeability in the drug discovery and development settings. 
Adv Drug Deliv Rev, 1997, 23, 3-25. 

[52] Congreve, M.; Carr, R.; Murray, C.; Jhoti, H., A rule of three for 
fragment – based lead discovery? . Drug Discov. Today, 2003, 8, 
876 – 877. 

[53] Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, 
K.W.; Kopple, K.D., Molecular properties that influence the oral 
bioavailability of drug candidates. J Med Chem, 2002, 45(12), 
2615-2623. 



548    Mini-Reviews in Medicinal Chemistry, 2012, Vol. 12, No. 6 Cabrera-Pérez et al. 

[54] Lu, J.J.; Crimin, K.; Goodwin, J.T.; Crivori, P.; Orrenius, C.; Xing, 
L.; Tandler, P.J.; Vidmar, T.J.; Amore, B.M.; Wilson, A.G.; 
Stouten, P.F.; Burton, P.F., Influence of Molecular Flexibility and 
Polar Surface Area Metrics on Oral Bioavailability in the Rat. J 
Med Chem, 2004, 47, 6104-6107. 

[55] Hou, T.; Wang, J.; Zhang, W.; Xu, X., ADME evaluation in drug 
discovery. 6. Can oral bioavailability in humans be effectively 
predicted by simple molecular property-based rules? J Chem Inf 
Model, 2007, 47(2), 460-463. 

[56] Giménez, B.G.; Santos, M.S.; Ferrarini, M.; Fernandes, J.P.S., 
Evaluation of blockbuster drugs under the Rule-of-five. Pharmazie, 
2010, 65, 148–152. 

[57] Overington, J.P.; Al-Lazikani, B.; Hopkins, A.L., How many drug 
targets are there? Nat Rev Drug Discov. , 2006, 5(12), 993-996. 

[58] Wang, J.; Krudy, G.; Xie, X.Q.; Wu, C.; Holland, G., Genetic 
algorithm-optimized QSPR models for bioavailability, protein 
binding, and urinary excretion. J Chem Inf Model, 2006, 46(6), 
2674-2683. 

[59] Lown, K.S.; Mayo, R.R.; Leichtman, A.B.; Hsiao, H.L.; Turgeon, 
D.K.; Schmiedlin, R.P.; Brown, M.B.; Guo, W.; Rossi, S.J.; Benet, 
L.Z., Role of intestinal P-glycoprotein (mdr 1) in interpatient 
variation in the oral bioavailability of cyclosporine. Clin. 
Pharmacol. Ther. , 1997, 62, 248–260. 

[60] Lown, K.S.; Kolars, J.C.; Thummel, K.E.; Barnett, J.L.; Kunze, 
K.L.; Wrighton, S.A.; Watkins, P.B., Interpatient heterogeneity in 
expression of CYP3A4 and CYP3A5 in small bowel. Lack of 
prediction by the erythromycin breath test. Drug Metabol. Dispos. , 
1994, 22, 947–955. 

[61] Guengerich, F.P. Cytochrome P450 enzymes, in Cytochrome P450: 
Structure, Mechanism and Biochemistry. Plenum Press: New York, 
1995. 

[62] Wang, E.; Lew, K.; Barecki, M.; Casciano, C.N.; Clement, R.P.; 
Johnson, W.W., Quantitative distinctions of active site molecular 
recognition by P-glycoprotein and cytochrome P450 3A4. Chem 
Res Toxicol, 2001, 14(12), 1596-1603. 

[63] Lill, M.A.; Dobler, M.; Vedani, A., Prediction of small-molecule 
binding to cytochrome P450 3A4: flexible docking combined with 
multidimensional QSAR. ChemMedChem, 2006, 1(1), 73-81. 

[64] Ekins, S.; Bravi, G.; Wikel, J.H.; Wrighton, S.A., Three-
Dimensional-Quantitative Structure Activity Relationship Analysis 
of Cytochrome P-450 3A4 Substrates. J. Pharmacol. Exp. Ther., 
1999, 291(1), 424-433. 

[65] Ekins, S.; Bravi, G.; Binkley, S.; Gillespie, J.S.; Ring, B.J.; Wikel, 
J.H.; Wrighton, S.A., Three- and Four-Dimensional Quantitative 
Structure Activity Relationship Analyses of Cytochrome P-450 
3A4 Inhibitors. J Pharmacol Exp Ther, 1999, 290, 429-438. 

[66] Ekins, S.; de Groot, M.J.; Jones, J.P., Pharmacophore and three-
dimensional quantitative structure activity relationship methods for 
modeling cytochrome p450 active sites. Drug Metab Dispos, 2001, 
29(7), 936-944. 

[67] Lewis, D.F.; Lake, B.G.; Dickins, M., Quantitative structure-
activity relationships (QSARs) in CYP3A4 inhibitors: the 
importance of lipophilic character and hydrogen bonding. J Enzyme 
Inhib Med Chem., 2006, 21(2), 127-132. 

[68] Sheridan, R.P.; Korzekwa, K.R.; Torres, R.A.; Walker, M.J., 
Empirical regioselectivity models for human cytochromes P450 
3A4, 2D6, and 2C9. J Med Chem, 2007, 14(50), 3173-3184. 

[69] Singh, S.B.; Shen, L.Q.; Walker, M.J.; Sheridan, R.P., A Model for 
Predicting Likely Sites of CYP3A4-mediated Metabolism on Drug-
like Molecules. J. Med. Chem., 2003, 46(8),1330-1336. 

[70] Cruciani, G.; Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, 
C.; Howe, T.; Vianello, R., MetaSite: understanding metabolism in 
human cytochromes from the perspective of the chemist. J Med 
Chem, 2005, 48(22), 6970-6979. 

[71] Zheng, M.; Luo, X.; Shen, Q.; Wang, Y.; Du, Y.; Zhu, W.; Jiang, 
H., Site of metabolism prediction for six biotransformations 
mediated by cytochromes P450. Bioinformatics, 2009, 25(10), 
1251-1258. 

[72] Li, H.; Sun, J.; Fan, X.; Sui, X.; Zhang, L.; Wang, Y.; He, Z., 
Considerations and recent advances in QSAR models for 
cytochrome P450-mediated drug metabolism prediction. J Comput 
Aided Mol Des, 2008, 22(11), 843-855. 

[73] Feher, M.; Ewing, T., Global or Local QSAR: Is There a Way Out? 
QSAR Comb. Sci., 2009, 28(8), 850-855. 

[74] Li, H.; Sun, J.; Fan, X.; Sui, X.; Zhang, L.; Wang, Y.; He, Z., 
Considerations and recent advances in QSAR models for 
cytochrome P450-mediated drug metabolism prediction. J Comput 
Aided Mol Des, 2008, 22(11), 843-855. 

[75] Iwatsubo, T.; Hirota, N.; Ooie, T.; Suzuki, H.; Shimada, N.; Chiba, 
K.; Ishizaki, T.; Green, C.E.; Tyson, C.A.; Sugiyama, Y., 
Prediction of in vivo drug metabolism in the human liver from in 
vitro metabolism data. Pharmacol Ther, 1997, 73(2), 147-171. 

[76] Schinkel, A.H., P-Glycoprotein, a gatekeeper in the blood–brain 
barrier. Adv. Drug Deliver. Rev., 1999, 36, 179-194. 

[77] Polli, J.W.; Wring, S.A.; Humphreys, J.E.; Huang, L.; Morgan, 
J.B.; Webster, L.O.; Serabjit-Singh, C.S., Rational use of in vitro P-
glycoprotein assays in drug discovery. J Pharmacol Exp Ther, 
2001, 299(2), 620-628. 

[78] Stouch, T.R.; Gudmundsson, O., Progress in understanding the 
structure-activity relationships of P-glycoprotein. Adv Drug Deliv 
Rev, 2002, 54(3), 315-328. 

[79] Ekins, S.; Waller, C.L.; Swaan, P.W.; Cruciani, G.; Wrighton, S.A.; 
Wikel, J.H., Progress in predicting human ADME parameters in 
silico. J Pharmacol Toxicol Methods, 2000, 44(1), 251-272. 

[80] Zhang, E.Y.; Phelps, M.A.; Cheng, C.; Ekins, S.; Swaan, P.W., 
Modeling of active transport systems. Adv Drug Deliv Rev, 2002, 
54(3), 329-354. 

[81] Gombar, V.K.; Polli, J.W.; Humphreys, J.E.; Wring, S.A.; Serabjit-
Singh, C.S., Predicting P-glycoprotein substrates by a quantitative 
structure-activity relationship model. J Pharm Sci, 2004, 93(4), 
957-968. 

[82] Xue, Y.; Yap, C.W.; Sun, L.Z.; Cao, Z.W.; Wang, J.F.; Chen, Y.Z., 
Prediction of P-Glycoprotein Substrates by a Support Vector 
Machine Approach. J Chem Inf Comput Sci, 2004, 44(4), 1497-
1505. 

[83] Cabrera, M.A.; Gonzalez, I.; Fernandez, C.; Navarro, C.; Bermejo, 
M., A topological substructural approach for the prediction of P-
glycoprotein substrates. J Pharm Sci, 2006, 95(3), 589-606. 

[84] Huang, J.; Ma, G.; Muhammad, I.; Cheng, Y., Identifying P-
glycoprotein substrates using a support vector machine optimized 
by a particle swarm. J Chem Inf Model, 2007, 47(4), 1638-1647. 

[85] Cerqueira-Lima, P.; Golbraikh, A.; Oloff, S.; Xiao, Y.; Tropsha, 
A., Combinatorial QSAR Modeling of P-Glycoprotein Substrates. J 
Chem Inf Model, 2006, 46(3), 1245-1254. 

[86] Ekins, S.; Swaan, P., Development of computational models for 
enzymes, transporters, channels and receptors relevant to 
ADME/TOX. Rev Comp Chem, 2004, 20, 333-415. 

[87] Didziapetris, R.; Japertas, P.; Avdeef, A.; Petrauskas, A., 
Classification analysis of P-glycoprotein substrate specificity. J 
Drug Target, 2003, 11(7), 391-406. 

[88] Gleeson, M.P., Generation of a set of simple, interpretable ADMET 
rules of thumb. J Med Chem, 2008, 51(4), 817-834. 

[89] Wang, Z.; Yan, A.; Yuan, Q.; Gasteiger, J., Explorations into 
modeling human oral bioavailability. Eur J Med Chem, 2008, 
43(11), 2442-2452. 

[90] Ma, C.Y.; Yang, S.Y.; Zhang, H.; Xiang, M.L.; Huang, Q.; Wei, 
Y.Q., Prediction models of human plasma protein binding rate and 
oral bioavailability derived by using GA–CG–SVM method. J 
Pharm Biomed Anal, 2008, 47, 677-682. 

[91] Pintore, M.; van de Waterbeemd, H.; Piclin, N.; Chretien, J.R., 
Prediction of oral bioavailability by adaptive fuzzy partitioning. 
Eur J Med Chem, 2003, 38(4), 427-431. 

[92] Turner, J.V.; Maddalena, D.J.; Agatonovic-Kustrin, S., 
Bioavailability prediction based on molecular structure for a 
diverse series of drugs. Pharm Res, 2004, 21(1), 68-82. 

[93] Moda, T.L.; Montanari, C.A.; Andricopulo, A.D., Hologram QSAR 
model for the prediction of human oral bioavailability. Bioorg Med 
Chem, 2007, 15(24), 7738-7745. 

[94] Andrews, C.W.; Bennett, L.; Yu, L.X., Predicting human oral 
bioavailability of a compound: development of a novel quantitative 
structure-bioavailability relationship. Pharm Res, 2000, 17(6), 639-
644. 

[95] Hou, T.; Wang, J., Structure-ADME relationship: still a long way 
to go? Expert Opin Drug Metab Toxicol, 2008, 4(6), 759-770. 

[96] Gutierrez, Y.; Estrada, E., MODESLAB 1.5 (Molecular 
DEScriptors LABoratory) for Windows. 2004. 

[97] Huuskonen, J., Estimation of aqueous solubility for a diverse set of 
organic compounds based on molecular topology. J Chem Inf 
Comput Sci, 2000, 40(3), 773-777. 



QSPR in Oral Bioavailability Mini-Reviews in Medicinal Chemistry, 2012, Vol. 12, No. 6    549 

[98] McElroy, N.R.; Jurs, P.C., Prediction of aqueous solubility of 
heteroatom-containing organic compounds from molecular 
structure. J Chem Inf Comput Sci, 2001, 41(5), 1237-1247. 

[99] Tetko, I.V.; Tanchuk, V.Y.; Kasheva, T.N.; Villa, A.E., Estimation 
of aqueous solubility of chemical compounds using E-state indices. 
J Chem Inf Comput Sci, 2001, 41(6), 1488-1493. 

[100] Liu, R.; So, S.S., Development of quantitative structure-property 
relationship models for early ADME evaluation in drug discovery. 
1. Aqueous solubility. J Chem Inf Comput Sci, 2001, 41(6), 1633-
1639. 

[101] Livingstone, D.J.; Ford, M.G.; Huuskonen, J.J.; Salt, D.W., 
Simultaneous prediction of aqueous solubility and octanol/water 
partition coefficient based on descriptors derived from molecular 
structure. J Comput Aided Mol Des, 2001, 15(8), 741-752. 

[102] Cheng, A.; Diller, D.J.; Dixon, S.L.; Egan, W.J.; Lauri, G.; Merz, 
K.M., Jr., Computation of the physio-chemical properties and data 
mining of large molecular collections. J Comput Chem, 2002, 
23(1), 172-183. 

[103] Gao, H.; Shanmugasundaram, V.; Lee, P., Estimation of aqueous 
solubility of organic compounds with QSPR approach. Pharm Res, 
2002, 19(4), 497-503. 

[104] Engkvist, O.; Wrede, P., High-throughput, in silico prediction of 
aqueous solubility based on one- and two-dimensional descriptors. 
J Chem Inf Comput Sci, 2002, 42(5), 1247-1249. 

[105] Yan, A.; Gasteiger, J., Prediction of aqueous solubility of organic 
compounds by topological descriptors QSAR Comb. Sci., 2003, 22, 
821-829. 

[106] Yan, A.; Gasteiger, J., Prediction of aqueous solubility of organic 
compounds based on a 3D structure representation. J Chem Inf 
Comput Sci, 2003, 43(2), 429-434. 

[107] Cheng, A.; Merz, K.M., Jr., Prediction of aqueous solubility of a 
diverse set of compounds using quantitative structure-property 
relationships. J Med Chem, 2003, 46(17), 3572-3580. 

[108] Butina, D.; Gola, J.M., Modeling aqueous solubility. J Chem Inf 
Comput Sci, 2003, 43(3), 837-841. 

[109] Manallack, D.T.; Tehan, B.G.; Gancia, E.; Hudson, B.D.; Ford, 
M.G.; Livingstone, D.J.; Whitley, D.C.; Pitt, W.R., A consensus 
neural network-based technique for discriminating soluble and 
poorly soluble compounds. J Chem Inf Comput Sci, 2003, 43(2), 
674-679. 

[110] Schaper, K.J.; Kunz, B.; Raevsky, O.A., Analysis of water 
solubility data on the basis of HYBOT descriptors, part 2: 
solubility of liquid chemicals and drugs. . QSAR Comb. Sci., 2003, 
22, 943-958. 

[111] Wegner, J.K.; Zell, A., Prediction of aqueous solubility and 
partition coefficient optimized by a genetic algorithm based 
descriptor selection method. J Chem Inf Comput Sci, 2003, 43(3), 
1077-1084. 

[112] Hou, T.J.; Xia, K.; Zhang, W.; Xu, X.J., ADME evaluation in drug 
discovery. 4. Prediction of aqueous solubility based on atom 
contribution approach. J Chem Inf Comput Sci, 2004, 44(1), 266-
275. 

[113] Wang, J.; Krudy, G.; Hou, T.; Zhang, W.; Holland, G.; Xu, X., 
Development of reliable aqueous solubility models and their 
application in druglike analysis. J Chem Inf Model, 2007, 47(4), 
1395-1404. 

[114] Fujiwara, S.; Yamashita, F.; Hashida, M., Prediction of Caco-2 cell 
permeability using a combination of MO-calculation and neural 
network. Int J Pharm, 2002, 237(1-2), 95-105. 

[115] Yamashita, F.; Wanchana, S.; Hashida, M., Quantitative 
structure/property relationship analysis of Caco-2 permeability 
using a genetic algorithm-based partial least squares method. J 
Pharm Sci, 2002, 91(10), 2230-2239. 

[116] Hou, T.J.; Zhang, W.; Xia, K.; Qiao, X.B.; Xu, X.J., ADME 
Evaluation in Drug Discovery. 5. Correlation of Caco-2 Permeation 
with Simple Molecular Properties. J. Chem. Inf. Comput. Sci., 
2004, 44, 1585-1600. 

[117] Marrero-Ponce, Y.; Cabrera, M.A.; Romero, V.; Bermejo, M.; 
Siverio, D.; Torrens, F., Prediction of Intestinal Epithelial 
Transport of Drug in (Caco-2) Cell Culture from Molecular 
Structure using in silico Approaches During Early Drug Discovery. 
Internet Electron J Mol Des, 2005, 4(2), 124-150. 

[118] Refsgaard, H.H.; Jensen, B.F.; Brockhoff, P.B.; Padkjaer, S.B.; 
Guldbrandt, M.; Christensen, M.S., In silico prediction of 

membrane permeability from calculated molecular parameters. J 
Med Chem, 2005, 48(3), 805-811. 

[119] Guangli, M.; Yiyu, C., Predicting Caco-2 permeability using 
support vector machine and chemistry development kit. J Pharm 
Pharm Sci, 2006, 9(2), 210-221. 

[120] Di Fenza, A.; Alagona, G.; Ghio, C.; Leonardi, R.; Giolitti, A.; 
Madami, A., Caco-2 cell permeability modelling: a neural network 
coupled genetic algorithm approach. J Comput Aided Mol Des, 
2007, 21(4), 207-221. 

[121] Castillo-Garit, J.A.; Marrero-Ponce, Y.; Torrens, F.; Garcia-
Domenech, R., Estimation of ADME properties in drug discovery: 
predicting Caco-2 cell permeability using atom-based stochastic 
and non-stochastic linear indices. J Pharm Sci, 2008, 97(5), 1946-
1976. 

[122] Paixao, P.; Gouveia, L.F.; Morais, J.A., Prediction of the in vitro 
permeability determined in Caco-2 cells by using artificial neural 
networks. Eur J Pharm Sci, 2010, 41(1), 107-117. 

[123] Zhao, Y.H.; Le, J.; Abraham, M.H.; Hersey, A.; Eddershaw, P.J.; 
Luscombe, C.N.; Butina, D.; Beck, G.; Sherborne, B.; Cooper, I.; 
Platts, J.A., Evaluation of human intestinal absorption data and 
subsequent derivation of a quantitative structure-activity 
relationship (QSAR) with the Abraham descriptors. J Pharm Sci, 
2001, 90(6), 749-784. 

[124] Klopman, G.; Stefan, L.R.; Saiakhov, R.D., ADME evaluation. 2. 
A computer model for the prediction of intestinal absorption in 
humans. Eur J Pharm Sci, 2002, 17(4-5), 253-263. 

[125] Cabrera, M.A.; Bermejo, M.; Ramos, L.; Grau, R.; Pérez-González, 
M.; González-Díaz, H., A topological sub-structural approach for 
predicting human intestinal absorption of drugs. Eur J Med Chem, 
2004, 39(11), 905-916. 

[126] Deconinck, E.; Hancock, T.; Coomans, D.; Massart, D.L.; Heyden, 
Y.V., Classification of drugs in absorption classes using the 
classification and regression trees (CART) methodology. J Pharm 
Biomed Anal, 2005, 39(1-2), 91-103. 

[127] Liu, H.X.; Hu, R.J.; Zhang, R.S.; Yao, X.J.; Liu, M.C.; Hu, Z.D.; 
Fan, B.T., The prediction of human oral absorption for diffusion 
rate-limited drugs based on heuristic method and support vector 
machine. J Comput Aided Mol Des, 2005, 19(1), 33-46. 

[128] Hou, T.; Wang, J.; Li, Y., ADME evaluation in drug discovery. 8. 
The prediction of human intestinal absorption by a support vector 
machine. J Chem Inf Model, 2007, 47(6), 2408-2415. 

[129] Gunturi, S.B.; Narayanan, R., In Silico ADME Modeling 3: 
Computational Models to Predict Human Intestinal Absorption 
Using Sphere Exclusion and kNN QSAR Methods. QSAR Comb. 
Sci., 2007, 26(5), 653 – 668. 

[130] Iyer, M.; Tseng, Y.J.; Senese, C.L.; Liu, J.; Hopfinger, A.J., 
Prediction and mechanistic interpretation of human oral drug 
absorption using MI-QSAR analysis. Mol Pharm, 2007, 4(2), 218-
231. 

[131] Yan, A.; Wang, Z.; Cai, Z., Prediction of Human Intestinal 
Absorption by GA Feature Selection and Support Vector Machine 
Regression. Int J Mol Sci, 2008, 9(10), 1961-1976. 

[132] Reynolds, D.P.; Lanevskij, K.; Japertas, P.; Didziapetris, R.; 
Petrauskas, A., Ionization-specific analysis of human intestinal 
absorption. J Pharm Sci, 2009. 

[133] Molnar, L.; Keseru, G.M., A Neural Network Based Virtual 
Screening of Cytochrome P450 3A4 Inhibitors. Bioorg. Med. 
Chem. Lett., 2002, 12, 419-421. 

[134] Ekins, S.; Berbaum, J.; Harrison, R.K., Generation and validation 
of rapid computational filters for cyp2d6 and cyp3a4. Drug Metab 
Dispos, 2003, 31(9), 1077-1080. 

[135] Korolev, D.; Balakin, K.V.; Nikolsky, Y.; Kirillov, E.; Ivanenkov, 
Y.A.; Savchuk, N.P.; Ivashchenko, A.A.; Nikolskaya, T., Modeling 
of human cytochrome p450-mediated drug metabolism using 
unsupervised machine learning approach. J Med Chem, 2003, 
46(17), 3631-3643. 

[136] Merkwirth, C.; Mauser, H.; Schulz-Gasch, T.; Roche, O.; Stahl, 
M.; Lengauer, T., Ensemble Methods for Classification in 
Cheminformatics. J Chem Inf Comput Sci, 2004, 44(6), 1971-1978. 

[137] Balakin, K.V.; Ekins, S.; Bugrim, A.; Ivanenkov, Y.A.; Korolev, 
D.; Nikolsky, Y.V.; Ivashchenko, A.A.; Savchuk, N.P.; 
Nikolskaya, T., Quantitative Structure-Metabolism Relationship 
Modeling of the Metabolic N-Dealkylation Reaction Rates. Drug 
Metab Dispos, 2004, 32(10), 1111-1120. 



550    Mini-Reviews in Medicinal Chemistry, 2012, Vol. 12, No. 6 Cabrera-Pérez et al. 

[138] Yap, C.W.; Chen, Y.Z., Quantitative Structure-Pharmacokinetic 
Relationships for Drug Distribution Properties by Using General 
Regression Neural Network. J Pharm Sci, 2005, 94(1), 153-168. 

[139] Kriegl, J.M.; Eriksson, L.; Arnhold, T.; Beck, B.; Johansson, E.; 
Fox, T., Multivariate modeling of cytochrome P450 3A4 inhibition. 
Eur J Pharm Sci, 2005, 24(5), 451-463. 

[140] Yap, C.W.; Xue, Y.; Li, Z.R.; Chen, Y.Z., Application of support 
vector machines to in silico prediction of cytochrome P450 enzyme 
substrates and inhibitors. Curr Top Med Chem, 2006, 6, 1593-1607. 

[141] Jones, D.R.; Ekins, S.; Li, L.; Hall, S.D., Computational 
approaches that predict metabolic intermediate complex formation 
with CYP3A4 (+b5). Drug Metab Dispos, 2007, 35(9), 1466-1475. 

[142] Terfloth, L.; Bienfait, B.; Gasteiger, J., Ligand-based models for 
the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 
substrates. J Chem Inf Model, 2007, 47(4), 1688-1701. 

[143] Bain, L.J.; McLachlan, J.B.; LeBlanc, G.A., Structure-activity 
relationships for xenobiotic transport substrates and inhibitory 
ligands of P-glycoprotein. Environ Health Perspect, 1997, 105(8), 
812-818. 

[144] Osterberg, T.; Norinder, U., Theoretical calculation and prediction 
of P-glycoprotein-interacting drugs using MolSurf parametrization 
and PLS statistics. Eur J Pharm Sci, 2000, 10(4), 295-303. 

[145] Bakken, G.A.; Jurs, P.C., Classification of multidrug-resistance 
reversal agents using structure-based descriptors and linear 
discriminant analysis. J Med Chem, 2000, 43(23), 4534-4541. 

[146] Dearden, J.C.; Cronin, M.T.D.; Al-Noobi, A.; Raevsky, O.A., 
QSAR modelling and prediction of P-glycoprotein-associated 
ATPase activity. 2001. 

[147] Osterberg, T.; Norinder, U., Prediction of drug transport processes 
using simple parameters and PLS statistics. The use of ACD/logP 
and ACD/ChemSketch descriptors. Eur J Pharm Sci, 2001, 12(3), 
327-337. 

[148] Ekins, S.; Kim, R.B.; Leake, B.F.; Dantzig, A.H.; Schuetz, E.G.; 
Lan, L.B.; Yasuda, K.; Shepard, R.L.; Winter, M.A.; Schuetz, J.D.; 
Wikel, J.H.; Wrighton, S.A., Three-dimensional quantitative 

structure-activity relationships of inhibitors of P-glycoprotein. Mol 
Pharmacol, 2002, 61(5), 964-973. 

[149] Onishi, Y.; Hirano, H.; Nakata, K.; Oosumi, K.; Nagakura, M.; 
Tarui, S.; Ishikawa, K., Application of Three-Dimensional 
Quantitative Structure-Activity Relationships of P-Glycoprotein 
Inhibitors and Substrates. Chem-Bio Informatics J, 2003, 3(4), 175-
193. 

[150] Wang, R.B.; Kuo, C.L.; Lien, L.L.; Lien, E.J., Structure–activity 
relationship: analyses of p-glycoprotein substrates and inhibitors. J. 
Clin. Pharm. Ther., 2003, 28, 203-228. 

[151] Wang, Y.H.; Li, Y.; Yang, S.L.; Yang, L., Classification of 
substrates and inhibitors of P-glycoprotein using unsupervised 
machine learning approach. J Chem Inf Model, 2005, 45(3), 750-
757. 

[152] Cianchetta, G.; Singleton, R.W.; Zhang, M.; Wildgoose, M.; 
Giesing, D.; Fravolini, A.; Cruciani, G.; Vaz, R.J., A 
pharmacophore hypothesis for P-glycoprotein substrate recognition 
using GRIND-based 3D-QSAR. J Med Chem, 2005, 48(8), 2927-
2935. 

[153] Crivori, P.; Reinach, B.; Pezzetta, D.; Poggesi, I., Computational 
models for identifying potential P-glycoprotein substrates and 
inhibitors. Mol Pharm, 2006, 3(1), 33-44. 

[154] Sheu, M.T.; Kao, Y.H.; Lin, Y.K.; Ho, H.O., A Quantitative 
Structure–Activity Relationship for the Modulation Effects of 
Flavonoids on P-Glycoprotein-Mediated Transport. . Chem Pharm 
Bull, 2010, 58(9), 1187-1194. 

[155] Estrada, E.; Molina, E.; Nodarse, D.; Uriarte, E., Structural 
contributions of substrates to their binding to P-Glycoprotein. A 
TOPS-MODE approach. Curr Pharm Des, 2010, 16(24), 2676-
2709. 

[156] Yoshida, F.; Topliss, J.G., QSAR model for drug human oral 
bioavailability. J Med Chem, 2000, 43(13), 2575-2585. 

[157] Turner, J.V.; Glass, B.D.; Agatonovic-Kustrin, S., Prediction of 
drug bioavailability based on molecular structure. Anal Chim Acta, 
2003, 485, 89-102. 

 
 

Received: February 20, 2011 Revised: August 17, 2011  Accepted: August 18, 2011 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




